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ABSTRACT

In multi-modal retinal image registration task, there are two major
challenges, i.e., poor performance in finding correspondence due to
inconsistent features, and lack of labeled data for training learning-
based models. In this paper, we propose a joint vessel segmentation
and deformable registration model based on CNN for this task, built
under the framework of weakly supervised style transfer learning
and perceptual loss. In vessel segmentation, a style loss guides the
model to generate segmentation maps that look authentic, and helps
transform images of different modalities into consistent representa-
tions. In deformable registration, a content loss helps find dense cor-
respondence for multi-modal images based on their consistent rep-
resentations, and improves the segmentation results simultaneously.
Experiment results show that our model has better performance than
other deformable registration methods in both quantitative and visual
evaluations, and the segmentation results also help the rigid transfor-
mation. 1

Index Terms— Multi-Modal, Retinal Images, Deformable Reg-
istration, Vessel Segmentation, Style Transfer

1. INTRODUCTION

Multi-modal image registration is an important task in retinal im-
age analysis. In order to better diagnose ophthalmologic diseases
for a patient’s eye, retinal images of multiple modalities captured by
different imaging systems should be collected and aligned, since var-
ious modalities convey complementary information. A conventional
routine (e.g., [1]) for this task consists of two steps, i.e., global coarse
alignment (e.g., rigid transformation) and local fine alignment (e.g.,
deformable registration), as shown in Fig. 1. In coarse alignment,
a floating image is warped globally towards a reference image of
another modality, where the transformation parameters can be com-
puted by key point detection and feature extraction (e.g., SIFT), fea-
ture matching, and parameter estimation (e.g., RANSAC). While in
fine alignment, in order to reduce non-rigid matching errors and the
errors from the previous step, local patterns in the floating image are
further warped to accurately match those in another modality by es-
timating a registration field, where each individual pixel is assigned
an offset vector. In this paper, we will also follow this routine, and
mainly handle the fine alignment step by designing a deformable
registration model.

One of the challenges in this task is that, it is hard for algo-
rithms to locate and describe mutual information among two modal-
ities, since common retinal patterns (e.g., vessels) appear in different

1Supplementary materials and codes are available at https://
github.com/JunkangZhang/RetinalSegReg.
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Fig. 1. The coarse-to-fine routine for registration. The grid-shaped
images overlay a warped floating image and a reference image,
which visualizes the alignment of vessel patterns in two modalities.

color intensities, contrasts and orientations etc. Previous works tried
to solve the problem by designing robust features [2], landmark de-
tectors [3] and line extractors [4] etc. Recently, Li et al.[1] extracted
phase maps from images’ Monogenic Signals [5] for registration,
where the phase maps from multi-modal images share similar ap-
pearance. Heinrich et al.[6] also proposed a modality independent
descriptor and matching schemes for rigid and deformable registra-
tion which can achieve good performance. However, most methods
rely on hand-designed features whose performance is subjected to
imaging qualities and modalities.

Another challenge for multi-modal registration is lack of dense
registration ground truths for training learning-based models. Espe-
cially, it is almost impossible to manually label deformation offsets
for all pixels in retinal image pairs. Mahapatra et al.[7] proposed to
directly generate a warped floating image via unsupervised Genera-
tive Adversarial Network (GAN), where the consistency constraint
of content and cyclic transformation [8] between two input images
are applied for training. They also proposed to learn to predict the
registration fields with supervision from another existing method,
whose performance might be limited. Other ideas for unsupervised
training include the adoption of photometric consistency [9, 10],
which might not be able to work on multi-modal images.

In this paper, we propose a deformable registration model based
on Convolutional Neural Network (CNN) and weakly supervised
end-to-end learning, which deals with both mentioned challenges.
On one hand, we propose a learning scheme based on style transfer
to train a vessel segmentation network without ground truth, in or-
der to extract mutual patterns across two modalities for finding good
correspondence. On the other hand, we build a deformable registra-
tion model which consists of the segmentation network and a reg-
istration field estimation network. And the whole model is trained
via end-to-end learning merely using roughly aligned multi-modal
images and a style target. To our best knowledge, this is the first
CNN-based method to estimate deformation fields for multi-modal
retinal images without training on ground truth.
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Fig. 2. The structure of the proposed model.

2. RELATED WORKS

Deformable registration. Bob et al.[9] trained a network for de-
formable registration field estimation via minimizing the difference
between a reference image and a floating image warped by the pre-
dicted field. Spatial Transformer Networks [11] (STN) is incorpo-
rated as an image warper to keep the network differentiable. Similar
ideas can be found in other works [10] and even generic optical flow
estimation methods [12, 13], which additionally include smoothness
constraints over the estimated field to get better results. However, all
these methods assume the two input images share similar appearance
or modality and cannot be directly applied in multi-modal scenarios.

Vessel segmentation and retinal image generation. Image
segmentation can be viewed as a special case of image generation.
Various CNN-based models (e.g., [14]) have been established for
retinal vessel segmentation via supervised training. Besides, Sadda
et al.’s method [15] augments vessel segmentation datasets via
CycleGAN [8] which generates retinal images from segmentation
maps, yet it cannot produce images for an unseen modality. Hervella
et al.[16] used CNN to transform a retinal image from its original
modality to a target modality, which requires strictly aligned image
pairs for training.

Deep style transfer is a popular technique for image generation,
where a source image is transformed to share similar styles (e.g.,
textures) as a target image while maintaining its own content (e.g.,
object structure). Gatys et al.[17] proposed a perceptual loss to di-
rectly transform an image iteratively aided by a pretrained network.
Johnson et al.[18] further finetuned the network on a specified target
style to eliminate the iterative prediction process. In this paper, a
similar framework is adopted for simultaneous vessel segmentation
and deformation field estimation.

3. PROPOSED METHOD

The structure of the proposed deformable registration model is il-
lustrated in Fig. 2. First, two roughly aligned images (i.e., floating
Iflt and reference Iref ) are fed into two segmentation networks Hs

x

respectively to obtain vessel segmentation results Isegx = Hs
x(Ix),

x ∈ {flt, ref}. Afterwards, intermediate features extracted from
both segmentation networks are propagated into a registration esti-
mation network which predicts a registration field F . Finally, the
floating image and its segmentation map can be warped according to
the registration field via STN [11].

In the view of learning, our optimization scheme is similar with
image style transfer based on perceptual loss [17, 18], which con-
sists of a style loss and a content loss. In our model, the style loss
minimizes the style features’ differences between the segmentation
result and an authentic segmentation map, such that the segmenta-

Fig. 3. The style target image Istyle [19].

tion prediction looks close to a real one. Meanwhile, the content
loss compares two segmentation maps, i.e., the floating map warped
by the registration field and the reference map without warping, to
ensure that only mutual information in both modalities are extracted
and the estimated field can properly warp the floating image.

3.1. Vessel Segmentation via Style Loss

Many CNN-based vessel segmentation models rely on pixel-wise
loss for training. However, existing datasets only have segmenta-
tion ground truth for few modalities. Furthermore, a network trained
on one dataset might not function on other datasets or modalities due
to varying imaging patterns among imaging systems. Instead, in our
model, style transfer technique is adopted for training without pixel-
wise ground truth. Our method adopts a pretrained CNN as a style
feature descriptor to model the global vessel structures. Moreover,
the segmentation network is trained by minimizing the style features’
difference between the segmentation result and a style target.

According to [17, 18], a pretrained network φ is used as the
feature extractor. It takes an image I and computes a feature tensor
from its j-th layer as φj(I) with shape cj × hj × wj . In order to
find I’s global styles (e.g., the distribution of vessel widths, lengths
and densities) while ignore their local distributions, a cj × cj Gram
matrix Gj(I) can be computed with its (i, k) element as

Gj(I)i,k=mean
(
ele prod

(
φj(I)i,·,·,φj(I)k,·,·

))
/cj (1)

where φj(I)i,·,· is the i-th slice in φj(I) along the depth dimension,
and ele prod() is element-wise production over two input tensors.
As a result, the spatial information in φj(I) is removed and only the
summaries of styles (e.g., vessels’ global structure) are preserved.
Finally, in order to minimize the style difference between two images
I1 and I2, the style loss is defined as the Frobenius norm over the
difference of their corresponding Gram matrices as

Lj
style(I1,I2)=||Gj(I1)−Gj(I2)||2F . (2)

In our case, I1 and I2 are a segmentation prediction Isegx and a style
target Istyle respectively.

For training, we pick a segmentation map (shown in Fig. 3) from
an outside dataset [19] as the style target Istyle which has no pixel-
wise correspondence with any of our training or test images. We
only assume that both the style target and our retinal images share
similar vessel structural styles, e.g., the tree-like structures, continu-
ously stretching and branching vessel paths with decreasing widths,
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Fig. 4. Network structures.

etc. Besides, we adopt a modified DRIU [14] network for segmen-
tation as shown in Fig. 4 (a), where several new layers are appended
after a pretrained VGG-16 [20] network. The pretrained layers are
kept fixed and are only used to extract lower-level information (e.g.,
edges, lines) from retinal images. And the new layers will learn to
combine the lower-level patterns into higher-level vessel structures
supervised by the style loss. In addition, the VGG-16 network also
functions as the style feature descriptors φj , where results from its
4 layers are used, i.e., j∈{relu1 2,relu2 2,relu3 3,relu4 3}. The
single-channel segmentation maps are duplicated into 3 channels to
fulfill the requirement of VGG’s input shape.

We set up two segmentation networks for floating and reference
images respectively. Each network has an independent part and a
shared part (i.e., the last layer with sigmoid function) as shown in
Fig. 2 and 4 (a). In order to provide mutual retinal information
for the following deformation step, features from the independent
layers of both networks are propagated into the next step. By sharing
the last layer, both independent parts are guided to transform multi-
modal images into consistent representations of similar modalities.

3.2. Registration Field Estimation via Content Loss

The features of similar modalities from the segmentation networks
are helpful for the registration task. Nevertheless, there is no dense
ground truth in retinal registration datasets. So we adopt a weakly
supervised scheme to train the deformable registration network, as-
suming that the corresponding vessels are close to each other but
not aligned. In addition, we propose a content loss which compares
the warped floating segmentation map and the reference’s segmenta-
tion, in order to improve the segmentation results Isegflt and Isegref and
predict the registration field F simultaneously.

In detail, the content loss is defined as

Lcontent(I
seg
flt ,I

seg
ref ,F )=MSE

(
STN(Isegflt ,F ),Isegref

)
(3)

where MSE() is Mean Square Error function, STN() [11] warps
image Isegflt based on registration field F . From the view of the seg-
mentation task, the content loss forces the segmentation results of
two modalities to be as close as possible, which could reduce noises
and recover missed predictions. Meanwhile, from the view of regis-
tration task, the mutual information (i.e., vessels) in different modal-
ities is utilized to find good dense correspondence.

The structure of our registration estimation network is shown in
Fig. 4 (b) which is similar with UNet [21]. It takes in and con-
catenates two feature tensors from the segmentation networks. In its

forward path, the features are downscaled s times via pooling layers
and then upscaled s−t times via transposed convolutional layers.
In the meantime, features in the same scales are concatenated via
skip connections during upscaling, so that multi-scale information
are integrated for prediction. In order to generate smooth registra-
tion fields for both vessel and non-vessel areas, the network makes
prediction F t at a 2t× (t>0) lower scale. In addition, a smoothness
constraint is applied over F t as

Lsmooth(F
t)=meank,i,j(|F t

k,i,j−F t
k,i+1,j |)+

meank,i,j(|F t
k,i,j−F t

k,i,j+1|)
(4)

where F t has shape 2×(h/2t)×(w/2t) (h and w are height and
width of an input image). Finally, F t is upsampled via bilinear in-
terpolation into F with shape 2×h×w to warp the floating image.

3.3. Miscellaneous and Summary

In order to force the segmentation networks to extract edges from
both sides of vessels instead of on only one side, i.e., to ensure ro-
tation invariance in vessel segmentation, a self comparison loss is
defined as

Lcompare(Ix)=MSE

(
rot
(
Hs

x

(
rot(Ix)

))
,Hs

x

(
Ix
))

(5)

where rot(Ix) rotates the input image by 180◦. We also find that a
SSIM [22] loss slightly improves performance, which is defined as

Lssim(Iflt,Iref ,F )=1−SSIM
(
STN(Iflt,F ),Iref

)
(6)

where SSIM(·,·)∈[0,1] measures structural similarities between the
warped floating image and reference image. Finally, the total loss is
defined as

Ltotal=
∑
x,j

Lj
style(I

seg
x ,Istyle)+λ1

∑
x

Lcompare(Ix)

+λ2Lcontent+λ3Lsmooth+λ4Lssim

(7)

where x∈{flt,ref}, and λi, i=1...4 are weighting parameters for
different loss terms.

4. EXPERIMENTS

4.1. Settings

We use a dataset [23] with 59 pairs of multi-modal retinal images
with shape 720×576 captured in both Color Fundus (the orange im-
age in Fig. 1) and Fluorescein Angiography (the gray image in Fig.
1). 29 pairs are from healthy eyes and the rest show diseases. We
take 30 pairs with odd index in their file names as the training set,
and the rest 29 for test. For each pair, we manually label 3 pairs
of matching points in both images to roughly align them via affine
transformation. These coarse labels actually function as the weak
supervision in training our deformation model.

Our model is implemented in PyTorch. The network is trained
with 1.8e5 updates by Adam [24] optimizer with learning rate as
1e−3. We set s=5 and t=2 in the registration network, and em-
pirically set λ1=λ2=1e-3, λ4=1e-5 in the loss function. λ3 is ini-
tially set to 2e-5, and increased to 5e-5 after 3e4 updates to obtain
smoother registration fields. During training, the data is augmented
by applying random deformation over images, where the deforma-
tion fields are generated as 2×4×3 arrays sampled from a normal
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Table 1. Evaluation for deformable registration
Method Dice Dices

Before warping 0.2744 0.3934
MIND* [6] 0.6019 0.5269
Phase [5] + MIND* [6] (inspired by [1]) 0.6178 0.5303
Ours 0.6546 0.5398
*Only the deformable registration part.
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Fig. 5. Deformable registration on a difficult example. From left to
right are input pairs, and results from MIND [6], Phase [5] + MIND,
and our network respectively. Please zoom in to see details.

distribution (mean 0, standard deviation 5 pixels) and then interpo-
lated to the same resolution as the images. In each update of train-
ing, two full-sized multi-modal images of a same eye are fed into
the model (i.e., batch size is 1) due to the fashion of style transfer
loss and limited GPU memory. Predefined masks are laid over the
segmentation results to remove noises outside the imaging circles.

To assess the performance of deformable registration without
ground truth, some works (e.g., [1]) use Dice Coefficient Dice∈
[0,1] to measure the overlapping degree of vessel structures from the
warped floating image and the reference image. Dice is defined as

Dice=
2×
∣∣A⋂ B

∣∣∣∣A∣∣+∣∣B∣∣ (8)

where A and B are binary vessel maps of the warped floating im-
age and reference image respectively, predicted by some third party
segmentation method. In this paper, we adopt B-COSFIRE [25] for
Dice. Besides, we also extend Dice into a soft Dice Coefficient
Dices∈[0,1] as

Dices=
2·sum

(
ele min(Ap,Bp)

)
sum(Ap)+sum(Bp)

(9)

where ele min(·,·) takes the element-wise minimum value across its
two inputs, andAp andBp are vesselness probabilities of the floating
and reference images. We use Frangi et al.’s method [26] to extract
vesselness maps from retinal images.

4.2. Deformable Registration Results

We compare our model with two non-CNN methods, i.e., MIND
[6], and a scheme combining phase images [5] with MIND inspired
by Li et al.[1]. For MIND, we only use its deformable registration
part. Besides, to simulate the cases where the coarse alignment step
produces large errors, we randomly deform the testing images in the
same way as treating the training images. For fairness, we use an
identical set of random deformations to test different methods.

Table 1 lists the Dice and Dices measurements by different
methods. As can be seen, our method achieves better performance
than other methods, with an increase of 0.0368 in Dice and 0.0095
in Dices over Phase [5] + MIND [6]. Fig. 5 shows a hard exam-
ple where one of the modalities has vague vessels. To check the
alignment of vessels, warped floating patches (in orange) and refer-
ence patches (in gray) are overlaid in grid view. As can been seen,

Table 2. Percentage (%) of correctly matched key point pairs
Input image type Top-50 Top-100 Top-200 Top-400
Original multi-modal 88.34 88.21 87.53 84.11
Phase [5] 93.10 91.97 91.02 87.43
Ours (segmentation) 98.07 97.72 97.47 97.31

correct / total matches 225 / 400 269 / 400 391 / 400

Fig. 6. Matched key point pairs using different input images. Red
and greens lines mark correct and incorrect pairs respectively. From
left to right are an input pair, and the results using original images,
phase images [5] and our segmentation maps respectively.

our method works better in aligning vague and thin vessels, e.g., the
orange vessel in 3rd row and 3rd column of each example. This
might be attributed to the global optimization scheme based on style
transfer, where vague vessels can still be extracted to fulfill the style
loss’s constraint. More examples are available in the supplementary
materials.

4.3. Segmentation for Rigid Transformation

In order to evaluate segmentation results without ground truth, we
take our segmentation network as an image transformer, and evalu-
ate its performance in a simple rigid transformation workflow. First,
dense key points are uniformly sampled at distance d in the two in-
put images to be matched. Then, dense SIFT features are extracted in
64×64 windows centered on each points. Finally, key point features
from both images are matched and sorted via brute-force searching
based on minimum euclidean distance. For evaluation, we select
the top-k pairs of matched key points, and count the number of cor-
rectly matched pairs. Considering the sampling distance and errors
in manual labels, a matched pair is considered correct if the distance
between the point in reference image and its ground truth location is
less than d pixels. We set d=8, and use the original images without
any warping in this experiment.

Three different types of input images are used for feature extrac-
tion, i.e., the original multi-modal retinal images, their correspond-
ing phase images, and the segmentation maps predicted by our net-
work. The percentage of correctly matched points are summarized
in Table 2. As can be seen, the success rate of our method has an
obvious margin over other methods. When selecting top-400 pairs,
our method has a margin of 9% over others. An example shown in
Fig. 6 also verifies this result, where our method results in much less
errors than other methods in finding correct correspondence.

5. CONCLUSION

In this paper, we handle the deformable registration task over multi-
modal retinal images by proposing a joint vessel segmentation and
registration model. Dense matching correspondence can be obtained
with the help from segmentation task which extracts consistent
representations from images of different modalities. The complete
model is trained end-to-end under weak supervision aided by the
style transfer framework. The experiments verifies the model’s
performance in both deformable and rigid transformation tasks.
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