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Abstract— Capturing images at high ISO modes will intro-
duce much realistic noise, which is difficult to be removed
by traditional denoising methods. In this paper, we propose a
novel denoising method for high ISO JPEG images via deep
fusion of collaborative and convolutional filtering. Collaborative
filtering explores the non-local similarity of natural images, while
convolutional filtering takes advantage of the large capacity of
convolutional neural networks (CNNs) to infer noise from noisy
images. We observe that the noise variance map of a high ISO
JPEG image is spatial-dependent and has a Bayer-like pattern.
Therefore, we introduce the Bayer pattern prior in our noise
estimation and collaborative filtering stages. Since collabora-
tive filtering is good at recovering repeatable structures and
convolutional filtering is good at recovering irregular patterns
and removing noise in flat regions, we propose to fuse the
strengths of the two methods via deep CNN. The experimental
results demonstrate that our method outperforms the state-of-
the-art realistic noise removal methods for a wide variety of
testing images in both subjective and objective measurements.
In addition, we construct a dataset with noisy and clean image
pairs for high ISO JPEG images to facilitate research on this
topic.

Index Terms— Realistic noise, Bayer pattern, convolutional
neural network, collaborative filtering, high ISO images.

I. INTRODUCTION

CAPTURING images under a high ISO (ISO is short
for International Standards Organization, which also

standardizes the sensitivity ratings for camera sensors) mode
enables us to capture fast motion objects, record the details
in dark scenes, and avoid blur artifacts when taking images
without tripods. Consequently, many cameras with a large
ISO range have been developed, such as Nikon D810 (ISO:
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Fig. 1. From left to right: (a) the input noisy image, (b) the noise variance
map (for the red channel) of (a), and (c) the close-up of (b).

64-12800), Canon EOS 5D Mark IV (ISO: 100-32000), Pana-
sonic gx8 (ISO: 100-25600). However, the read noise and shot
noise will increase at high ISO conditions. Due to the highly
nonlinear imaging process introduced by demosaicing, white
balance, tone mapping, JPEG compression etc., the statistic
property of this kind of noise (named realistic noise hereafter)
is more complex than that of Gaussian noise [1]. Therefore,
directly utilizing the well developed Gaussian noise removal
method to blindly handle this kind of noise cannot produce
satisfactory results.

Blind image denoising usually involves two stages, i.e. noise
estimation and denoising with the estimated noise level. The
models used for noise level estimation can be categorized
as point, curve (line) and map models. The point model
corresponds to the homogeneous white Gaussian noise, which
can be described by the noise variance [2]. The line model
corresponds to the Poisson-Gaussian noise, whose noise level
depends on the image intensity. However, this model is only
suitable for raw images or linear imaging system. To cope with
the non-linear imaging pipeline, the works in [3], [4] proposed
to utilize a noise level function (NLF) to model the relationship
between noise level and image intensity. Nevertheless, this is
still not suitable to model the noise in high ISO JPEG images.
Recently, Nam et. al proposed to utilize noise variance map to
describe the noise level of JPEG images, which demonstrates
that the noise is not only content-correlated but also channel-
correlated [1]. Fig. 1 (b) presents the noise variance map for
the image shown in Fig. 1 (a) (captured by Nikon D800 at ISO
6400). In addition to the intensity-dependent characteristic,
we observe that the noise is also spatial correlated due to the
interpolation in demosaicing from sensor outputs. Specifically,
noise in the observed samples is spread into the interpolated
ones, which makes the noise variance map has a pattern similar
to the Bayer color filter array as shown in Fig. 1 (c). Therefore,
in this paper we propose a novel noise estimation method by
taking advantage of the Bayer pattern prior.
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For image denoising, many methods have been proposed
to remove the white Gaussian noise, including non-local
similartiy (internal-correlation) based methods [5]–[8], learn-
ing (external-correlation) based [9]–[11], and the combi-
nation of internal and external denoising [12]–[14]. With
the rapid development of deep learning in vision-based
research, the convolutional neural network (CNN) based
denoising methods have emerged and achieved promising
results [15]–[18]. Compared with Gaussian noise removal,
only a few researches on blind realistic noise removal exist and
they mainly focus on internal-correlation [19]–[22]. Recently,
Xu et al. proposed to denoise real noisy images by utilizing
external priors to guide internal prior learning [23], which
demonstrates that the external-correlation is important for
realistic noise removal.

Based on the above observations, we propose to remove
the realistic noise introduced in high ISO JPEG imaging by
deep fusion of external and internal denoising.1 For external
denoising, we utilize CNN to learn the mapping function
between noisy image and the residual noise. For simplicity,
we denote the CNN based denoising process as convolutional
filtering in the following. For internal denoising, we utilize col-
laborative filtering to explore the non-local similarity in noisy
images. There are mainly three contributions in this paper.
First, to our best knowledge, we are the first to take advantage
of the Bayer pattern of noise variance map in noise estimation
and collaborative filtering. Second, we propose to fuse the
convolutional and collaborative filtering results by deep CNN
learning, which combines the advantages of learning-based
denoising and non-local similarity based denoising. Third,
we construct a benchmark dataset with noisy and noise-free
image pairs for high ISO JPEG images. The diversity of the
captured dataset enables us to learn a CNN to remove realistic
noise.

The remainder of this paper is organized as follows.
Section II gives a brief introduction of related work on noise
estimation and realistic noise removal. Sec. III illustrates
the framework of the proposed method. The proposed noise
estimation and removal method is detailed in Sec. IV and
V, respectively. Experimental results and discussions are given
in Sec. VI. Sec. VII concludes the paper.

II. RELATED WORK

In this section, we briefly introduce the two main compo-
nents in blind noise removal, namely noise estimation and
noise removal.

A. Noise Estimation

There are many noise estimation methods for white
Gaussian noise, such as the block-based methods [24]–[26],
PCA-based methods [2], [27], and statistic-based meth-
ods [28]. These methods usually take advantage of the flat
patches in the target image [24], [26] or utilize the low-rank
patches to estimate the noise variance [2], [27]. However,

1Note that, in this paper we focus on JPEG images since JPEG is the most
popular image format used in our daily life.

the noise in captured images are usually not white Gaussian
noise. Therefore, it is not suitable to model real noise with
only one noise variance.

To solve this problem, some methods are proposed to esti-
mate signal dependent noise, including multi-image based and
single-image based. The multi-image based methods estimate
noise variance by capturing the same scene with the same cam-
era setting for multi-times [29], which is unreasonable in real
applications. In contrast, estimating the signal dependent noise
variance from a single image is challenging. The work in [30]
proposed to estimate both additive and signal dependent band
noise of hyperspectral images using the maximum-likelihood
method. Alparone et al. demonstrated that the homogeneous
pixels produce scatter-points along a straight line and the slope
of the line is the signal-dependent noise level [31]. Moreover,
Abramov et al. proposed weighted LMS line fitting model
which considers the number of points in clusters, to estimate
the noise parameters [32]. The work in [3] estimated the NLF
using the bounds derived from segmented smooth regions with
Bayesian MAP method. Yang et al. proposed to estimate NLF
based on its sparse representation [4]. However, NLF is still
not suitable to describe the noise statistics since it assumes
that there is only one noise level for each intensity.

The noise in real captured images is very complex, which is
spatial, frequency, channel, and content correlated. Nam et al.
proposed a data-driven approach to estimate the content and
channel correlated noise variance [1]. Inspired by this work,
we also propose to use a noise variance map to represent the
noise level in high ISO JPEG images. In addition, we take the
Bayer pattern of noise variance into consideration in the noise
estimation process.

B. Realistic Noise Removal

Although hundreds of methods have been proposed to deal
with Gaussian noise, the methods for realistic noise removal
are rare. Rabie proposed a blind statistical framework for blind
denoising, which models the noise as outliers [33]. Yang et al.
proposed to remove CCD noise utilizing adaptive BM3D,
whose parameters are adjusted according to the estimated
noise level [4]. Lebrun et al. modeled the noise as spatial,
frequency and scale dependent. They first estimated the noise
covariance matrices in each scale, and then denoised the image
using nonlocal-Bayes method with the estimated covariance
as parameters [19], [20]. Zhu et al. utilized the mixture of
Gaussian distribution to model the noise, and utilized a
low-rank mixture of Gaussian model to remove the noise [21].
Xu et al. proposed a multi-channel optimization model for
real color image denoising which introduced a weight matrix
to adjust the contributions of R, G, and B channels based on
the noise levels [22]. The software Neat Image [34] aimed at
removing the noise introduced in high ISO capturing. It first
estimated the noise parameters from flat regions and then
removed the noise using the estimated parameters. These
methods generally first estimate noise levels and then remove
noise correspondingly. In contrast, the work in [23] focused
on the prior learning rather than noise modeling and achieved
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Fig. 2. Framework of the proposed denoising method.

promising denoising results by external prior guided internal
prior learning.

Inspired by the work in [23], we propose to remove noise
by taking advantages of both external and internal priors.
For internal denoising, we follow the collaborative filtering
strategy in BM3D, and integrate the estimated noise variance
map and the Bayer pattern of noise variance in the filtering
process. For external denoising, to fully take advantage of
external examples, we propose to utilize convolutional filtering
to remove the noise. Finally, we combine the strengths of
collaborative and convolutional filtering via deep CNN fusion.

This work extends our previous work [35] in three aspects.
First, we give a more detailed illustration of the Bayer prior
based noise estimation and collaborative filtering, and analyze
the frequency distribution of realistic noise. Second, we pro-
pose to fuse the convolutional and collaborative filtering results
together via a deep CNN. Third, we construct a dataset with
noisy and clean image pairs for high ISO JPEG images to
facilitate research on this topic.

III. FRAMEWORK OVERVIEW

Fig. 2 presents the framework of the proposed noise removal
method. Given a noisy image X , we first estimate its noise
variance map � according to the non-local similarity of image
content. Then, in the collaborative filtering stage, we extend
color BM3D (CBM3D) [6] to adaptive CBM3D (ACBM3D),
which is able to handle realistic noise by integrating the esti-
mated � and Bayer-pattern down-sampling into the denoising
process. In the convolutional filtering stage, we utilize CNN to
learn the mapping function from the noisy image to the latent
noise. We observe that the collaborative and convolutional
filtering results are complementary to each other. Therefore,
utilizing deep CNN to fuse the two results together generates
the final denoising results X̂ . Each module will be discussed
in detail in the following sections.

IV. NOISE LEVEL ESTIMATION

As introduced in Sec. II A, many noise estimation methods
are smooth-block-based, which assume that the variance of
flat regions are introduced by noise. Since the flat regions are
not always available and the noise variance in texture regions

Fig. 3. Illustration of the Bayer downsampling process. From left to right:
(a) Bayer pattern, (b) the downsampled version of (a), (c) the noise variance
map of one block, and (d) the four Bayer-downsampled blocks of (c).

are different from that in flat regions, we propose to estimate
noise variance by taking advantage of the non-local similarity
of image blocks.

However, we observe that the noise variances of neighboring
pixels are not similar, as shown in Fig. 3 (c). This is due to
the color filter array (CFA). CFA is used in single-chip digital
image sensors to create color images and is mostly Bayer
filter. The filter pattern is 50% green, 25% red and 25% blue,
as shown in Fig. 3 (a). Therefore, the color image produced
by cameras is reconstructed by interpolating missing color
information, i.e. demosaicing interpolation, in each channel.
Since interpolating will reduce the noise variance, the noise
variances of neighboring pixels in each channel are not similar,
as shown in Fig. 3 (c). Therefore, we propose to downsample
the images in each channel into sub images according to the
Bayer pattern. As shown in Fig. 3 (a) and (b), the input is
downsampled into four sub-images. In this way, the pixels in
one sub-image are either all interpolated or all captured by
the camera sensor. As shown in Fig. 3 (c) and (d), the noise
variances of neighboring pixels are not similar in the original
block, but similar in Bayer-down-sampled block. Therefore,
we split X into four sub-images {X1, X2, X3, X4} according
to the Bayer pattern and estimate their noise variance maps
separately. Since the noise estimation process is the same for
the four sub-images, in the following we use Xi to denote the
sub-image.

We observe that the mean noise level of JPEG images
captured at high ISO mode depends on the ISO value.
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Therefore, we propose to remove the noise using CBM3D with
a coarse noise variance σ̄ 2, which is defined as σ̄ = 3log2

ISO
100 .

Generally, σ̄ is much larger than the true noise level in order to
remove the noise thoroughly. We denote the coarsely denoised
version of Xi as X̄i . Compared with Xi , the noise in X̄i is
greatly reduced. Then, we split X̄i into m × m blocks (m is
set to 4 in this paper). For each block B̄ in X̄i , we search
for its most similar blocks in a local region of X̄i centered
at B̄ . We observe that the noise variance in the Y channel is
smaller than that in R, G, and B channels. Therefore, we first
transform the input noisy RGB image into YUV space using
the transformation matrix A, defined as

A =
⎡
⎣

0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −0.100

⎤
⎦ . (1)

Then, we search similar blocks according to the Euclidean
distance in the Y channel.

Suppose we retrieve n similar blocks for each query block
B̄, denoted as {B̄1, B̄2, . . . , B̄n}. n is set to 16 in this paper.
Their corresponding noisy blocks are {B1, B2, . . . , Bn}. The
residual block D j = B j − B̄ j contains noise and some high
frequency details. Therefore, it is not suitable to use the
variance of D j as the estimated variance of noise. Meanwhile,
{D j (k)}n

j=1 (k is the pixel index) have similar content and
their noise variances are also similar to each other. Therefore,
the noise variance for the kth pixel in block B can be
calculated as

σ c
B(k)

2 = var{Dc
1(k),Dc

2(k), . . . ,Dc
n(k)}, c = y, u, v, (2)

where c is the channel index and var{�} represents calculating
the variance of the set �. In this way, we obtain the pixel-wise
noise variance σB for the whole block B . After merging them
together via averaging, we obtain the noise variance map �

y
i ,

�u
i , and �v

i for sub-image Xi . Finally, �c
i (i = 1, 2, 3, 4) is

mapped to its original position in Xc according to the Bayer
pattern, as denoted by the merging operator between Fig. 3
(a) and (b), producing the final noise variance map �c.

V. NOISE REMOVAL

In this section, we present our denoising algorithm with the
estimated noise variance map as input, including collaborative
filtering, convolutional filtering and the deep fusion of the two
filtering results.

A. Collaborative Filtering Based Denoising

We observe that many realistic noise removal methods are
built on Gaussian noise removal methods. Recently, the work
in [36] demonstrates that BM3D is the most effective method
for removing realistic noise compared with other Gaussian
noise removal methods. Therefore, in this paper, instead of
developing the denoising algorithm from scratch, we follow
the collaborative filtering strategy of BM3D, and incorporate
the estimated noise variance map into the denoising process
to handle realistic noise.

A straight forward way is to adaptively change the noise
variance for each block in CBM3D. However, as shown

in Fig. 1, the noise variances in one block are not uniform, and
thus not reasonable to process the whole block using the same
variance. Hence, similar to the strategy in noise estimation,
we down-sample the noisy input X into four sub-images and
remove their noise separately in the first stage of CBM3D. For
each block B in image Xi , we search for its similar blocks
in a local region centered at B according to the Euclidean
distance in the Y channel. The retrieved similar blocks form
a 3D cube, denoted as B3D . The noise in B3D is removed by
hard-thresholding of the transformed coefficients, namely

B̃c
3D = T −1

3D (γ (T3D(Bc
3D))), c = y, u, v, (3)

where T3D is a 3D transform, including a 2D wavelet trans-
form and a 1D Hadamard transform along the third dimension.
γ (·) is a hard thresholding operator with threshold δcλcσ̄ c

B ,
where σ̄ c

B is the mean noise variance of block B , δc and λc

are constant coefficients. After the inverse 3D transform T −1
3D ,

we obtain the initial denoised blocks B̃c
3D. After generating

the initial denoising result for each block, these denoised
blocks are merged together via weighted averaging, producing
the initial denoising result X̃i . Finally, the four denoised
images {X̃1, X̃2, X̃3, X̃4} are fused together according to the
Bayer-pattern, generating an initial denoising image X̃ , which
cannot only improve patch matching accuracy but also provide
guidance for filtering in the following stage.

We would like to point out that although the noise in
X̃ is greatly reduced compared with X , the smoothness of
neighboring pixels is destroyed due to the proposed sub-image
based denoising strategy. Therefore, in the second stage of
CBM3D, we propose to denoise image X as a whole with
image X̃ as guidance. To avoid ambiguity, instead of using
B , we use P to denote the block in the whole image. For
each block P̃ in image X̃ , we retrieve its similar blocks
according to the Euclidean distance in the Y channel, and
these similar blocks form a 3D cube P̃3D . Correspondingly,
we build another 3D cube P3D from image X using the patch
index of P̃3D . Then the final denoised blocks P̂3D is produced
by

P̂c
3D = T wie−1

3D (W c � (T wie
3D (Pc

3D))), c = y, u, v, (4)

where T wie
3D is a 3D transform, consisted by a 2D DCT

transform and a 1D Hadamard transform. � represents
element-wise multiplication operation. W c is a Wiener weight-
ing parameter for coefficients thresholding, and is calculated
as

W c = |T wie
3D (P̃c

3D)|2
|T wie

3D (P̃c
3D)|2 + (βcσ̄ c

P)2
, c = y, u, v, (5)

where σ̄ c
P is the mean noise deviance of block Pc .

Fig. 4 presents the noise standard deviation distribution
in frequency domain for Gaussian noise and realistic noise
in the Y channel. We select three blocks, i. e. P1, P2, and
P3, with different contents from one noisy image captured
by Nikon D800 at ISO 6400 to show their noise standard
deviations. For one patch, we have 100 noisy samples since
we captured the same scene for 100 times. Then, we apply
the 8 × 8 DCT transform on the 100 noisy patches and their
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Fig. 4. Comparison of noise deviation distribution in frequency domain
(zig-zag scanning order) for Gaussian noise and realistic noise.

mean patch, respectively. Hereafter, we calculate the deviation
for each frequency using the frequency residual between the
100 noisy patches and the mean patch. For Gaussian noise,
we add white Gaussian noise 100 times to the mean patch with
the mean deviation of its realistic noisy version, and compute
the deviation for each frequency using the same method.
It can be observed that the deviation distribution for Gaussian
noise in frequency domain is nearly uniform.2 However, for
realistic noise, the noise variance in low-frequency band is
much higher than that in high-frequency band for each block
P . Consequently, we introduce the parameter βc, as shown
in Eq. 5, to adjust the Wiener thresholds so as to remove
the noise in low-frequency band thoroughly. We first tried
to adjust βc for different frequencies according to the curve
shown in Fig. 4, but the result is not good. This is due
to the fact that the characteristic of realistic noise is very
complex. It cannot be modeled well using only the frequency
distribution. Therefore, we used a fixed βc, which is larger
than 1, for each block.

After obtaining the denoised blocks P̂ for each block P ,
we merge them together via weighted averaging, generating
the final internal denoising image X̂ I .

B. Convolutional Filtering Based Denoising

The collaborative filtering method only takes advantage
of the non-local similarity of the noisy image itself. In the
past decades, many image denoising methods have benefited
from the external priors learned from clean images. Recently,
the CNN has shown its great potential in removing Gaussian
noise. In this paper, we extend CNN to process realistic noise.

Note that the work in [23] demonstrates that the trained
Blind-DnCnn [16] for arbitrary noise level cannot handle
realistic noise. The reason is that realistic noise is not a
combination of Gaussian noise with different variances. The

2Since we only simulate the noise for 100 times, there is fluctuation in
Gaussian noise variance curve. Ideally, the white Gaussian noise variance
should be constant in frequency domain.

Fig. 5. Preference of denoising patches by convolutional or collaborative
filtering. The original noisy image is captured by Nikon D800 at ISO 3200.
Red marks collaborative filtering preference and blue marks convolutional
filtering preference.

statistics of realistic noise is more complex than that of
Gaussian noise in both frequency and spatial domains. Its
complexity motivates us to adopt convolutional filtering, which
has a high capacity to infer the noise.

1) Network Architecture: Recent developments of CNN in
image super-resolution and denoising have demonstrated that
the residual learning can improve the learning accuracy and
accelerate the learning speed [16], [37]. In addition, to reduce
the internal covariance shift, batch normalization is usually
adopted to stabilize the learning process. For the activation
function, rectified linear units (ReLu) is widely used in recent
years since it can accelerate the convergence of stochastic
gradient descent and its computing complexity is much lower
compared with Sigmoid and Tanh. Therefore, we use the com-
bination of Conv+BatchNorm+ReLu as the main operators
in our denoising network. As shown in Fig. 2, the proposed
denoising network is similar to that of DnCnn [16]. For the
first layer, we utilize k convolutional filters with size 3×3×κ ,
where κ is the channel number. This paper processes color
images, i. e. κ is 3. Followed by the convolution layer is the
Relu layer. The following layers are composed by convolution,
batch normalization, and Relu layers. For each convolution
layer, there are k convolution filters with size is 3×3×k. The
end layer is a 3 × 3 × k convolution filter, which reconstructs
the residual noise. In this paper, k is set to 64. Using thin
(e.g. 64 channels) and small filter size (e.g. 3 × 3) in deep
network is an effective strategy for improving performance
with reasonable number of parameters [16], [37]–[39].

2) Training Details: Generally, the peak signal noise
ratio (PSNR) is utilized to evaluate the denoising performance.
Therefore, we utilize the mean square error as the loss function
to learn the mapping parameters. We denote the clean image
corresponding to the noisy input X as Y . Then, the loss
function is defined as

argmin
W

1

2N

N∑
j=1

‖F(X j ;W) − (X j − Y j )‖2
F , (6)

where {X j , Y j } are the noisy-clean training pairs, F(X j ;W)
is the learned operators to map X to the residual noise, W is
the parameters to be learned, and N is the number of training
pairs in each batch.
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Fig. 6. The end to end training of the convolutional filtering and deep fusion network.

In the training process, we extract noisy-clean patch pairs
of size 40 × 40 from the noisy input and its corresponding
noise-free image. To reduce the boundary artifacts caused
by convolution, we utilize zero padding before applying
convolution. We utilize adaptive moment estimation (Adam)
method with mini-batch size of 128 for training. The learning
rate is initialized as 1e-4 and the training process converges
in 20 epochs. Since the noise cannot be simulated online,
the diversity of training samples is reduced to some extent.
Therefore, data augmentation is important to enrich the train-
ing dataset. We augment the training pairs via scaling, rotation
and flipping.

C. Deep Fusion

Fig. 5 presents the preference of collaborative filtering and
convolutional filtering results. For each patch (8 × 8), if the
collaborative filtering result is better than convolutional filter-
ing result, it is marked in red. Otherwise, this patch is marked
in blue. We observe that the collaborative filtering is good at
keeping the repetitive edges, while the convolutional filtering
is good at removing noise in flat regions. In other words,
the collaborative and convolutional filtering based denoising
results are complementary to each other. This inspires us to
combine the two results together.

In the literature, there are some combined denoising meth-
ods proposed for Gaussian noise removal, e.g. weighted aver-
age in spatial domain [12] or frequency domain [14], and
using neural network to learn the weighting parameters [13].
The work in [13] utilizes a fully connected neural network,
which takes one month of training time. In contrast, we pro-
pose to utilize deep CNN to train the fusion filters. In addition,
we utilize residual learning which learns the residual noise
rather than the clean image.

The structure of proposed fusion network is the same as that
of external denoising network, except for the first convolution
layer. The first convolution layer is composed by 64 filters with
size of 3 × 3 × 9. The channel number is 9 since the input is
three color images, i.e. the noisy input X , the noise residual
generated in collaborative filtering R̂I = X − X̂ I , and the
residual generated by convolutional filtering R̂E = F(X;W).
The training parameter settings, i.e. batch size and patch size,
are the same with those of external denoising network.

We would like to point out that the proposed convolutional
filtering network and deep fusion network can be trained in
an end-to-end fashion. As shown in Fig. 6, the two networks
are connected by a concatenation layer. There are two loss

functions in the connected network, i.e. the noise residual loss
for convolutional filtering, named as external loss, and the final
noise residual loss after deep fusion, named as fusion loss.
Therefore, the total loss during training is

L(R̂, R;W) = 1

2N

N∑
j=1

(‖R̂E j − R j ‖2
F + ‖R̂ j − R j‖2

F ), (7)

where R j is the ground truth residual, R̂E j is the output of
the external denoising network, and R̂ j is the final output.

In the experiments, we train the two networks together since
this can save lots of training data compared with training the
two networks separately.

VI. EXPERIMENTS

A. Dataset and Parameter Settings

One limit in realistic noise removal is the lack of training
data. In this paper, we construct a dataset with noisy and clean
image pairs for high ISO JPEG images. The clean image
is obtained by shooting the same scene for 100 times and
their average is treated as the noise-free image. This is a
common strategy in previous realistic noise removal work to
generate noisy-clean pairs [1]. We shot seven groups of images
using Canon 60D and Nikon D800 camera at different ISO
settings. For each group, we capture four static indoor scenes.
Namely, there are totally 28 scenes captured. The details
about the constructed dataset is presented in the supplemental
material. In addition, we adopt the dataset published in [1],
which contains 11 static scenes with noisy-clean image pairs,
to enrich our training and testing set. In total, we construct nine
groups of training and testing images according to the camera
type and ISO settings. Table I presents the detail settings for
each group. Each group contains 10-20 testing images with
size 512 × 512, and there are 110 images in total for testing.
Fig. 7 (top two rows) presents a few examples of our testing
indoor images from the nine groups.3

We first train a model for each camera at a specific ISO
setting, named as FCCF-s (Fusion of Collaborative and Con-
volutional Filtering-specific). We extract 128×3100 patches of
size 40 × 40 as the training data for each camera setting. The
convolutional layer depth of the external convolutional filtering
and deep fusion network is set as 17 and 12, respectively,
namely that the convolutional layer depth of the whole network

3After publication of this paper, we will release our dataset and code to
inspire more works on this topic.
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Fig. 7. A few examples of our indoor (top two rows) and outdoor (bottom
two rows) testing images.

is 29. We find that using more convolutional layers can slightly
boost the denoising performance. Considering the tradeoff
between computing complexity and denoising performance,
we use the above setting in this paper. To demonstrate the
generality and scalability of the proposed method, we train
a general network for all test cameras at a variety of ISO
settings. In this case, the training data is extracted from all
the training scenes. The trained model is named as FCCF-b
(FCCF-blind). In the following experiments, we will compare
their performance.

For the parameters of collaborative filtering, we set δc in
Eq. (3) to 2.7. The thresholding parameters λc and βc in
Eq. (3) and (5) depend on the camera setting. Generally,
λy ∈ [1, 1.7], λu ∈ [2.5, 3.5], λv ∈ [2.5, 5], and β y ∈ [2, 3.7],
βu ∈ [4, 8], βv ∈ [6, 8]. λc and βc are fixed for each camera
setting, and their settings are detailed in the supplemental
material.

B. Analysis of the Proposed Method

In this subsection, we demonstrate the effectiveness of the
proposed denoising method via presenting intermediate results.
We first present the collaborative (convolutional) filtering
based denoising and their deep fusion (FCCF-s) results in
both subjective and objective measurements. Then, we present
the denoising results generated by the general model FCCF-b
trained by all kinds of camera settings. Finally, we compare
with convolutional filtering by setting its convolutional layer
number to 29, the same as that of our FCCF network.

1) Intermediate Results: Fig. 8 presents the intermediate
visual results of two images cropped from the scene captured
by Canon 60D at ISO 6400. To show the details clearly,
we show the close-up of the region marked by red boxes for
each result. It can be observed that collaborative filtering is
good at recovering repetitive structures, such as the stripes on
the ornamental band. However, it cannot remove the noise
in the flat regions well. For example, the flat regions of
the second image in the internal denoising result is still
noisy. On the contrary, the convolutional filtering is good at
removing the noise in flat regions, but cannot work well for
repetitive structures. As expected, the FCCF-s result combines

the strength of the two results, achieving the best denoising
result.

In addition, we present the objective intermediate results
in terms of PSNR and SSIM [40] in Table I. For color
images, we average the SSIM values of R, G, and B channels
as the final SSIM value. For each group, the PSNR and
SSIM results are the average results of all the test images
in this group. It can be observed that FCCF-s outperforms
collaborative and convolutional filtering results for all the
nine groups. On average, FCCF-s outperforms collaborative
and convolutional filtering results by 0.86 dB and 0.3 dB,
respectively.

2) Comparison of Specific Model and Blind Model: As
stated in Section VI-A, we not only train a specific denoising
model for each camera setting (i. e. FCCF-s), but also train
a general model for all the camera settings (i. e. FCCF-b),
which could be utilized for blind denoising of images captured
by different cameras. We select 2300 images with size of
512 ×512 from those used in FCCF-s training to ensure there
is no overlap between training and testing contents. In total,
we extract 128 × 3100 patches of size 40 × 40 as the training
data for FCCF-b. Table I compares the results of FCCF-s and
FCCF-b for nine groups of testing images. It can be observed
that the results of FCCF-b are comparable with that of FCCF-
s. It demonstrates the feasibility of training a single model
for all the camera settings. Another interesting phenomenon
is that some results of FCCF-b even outperforms the results
of FCCF-s. The reason is that the training data of FCCF-b is
much richer than that of FCCF-s, even if the noise type of
FCCF-b is more complex than that of FCCF-s.

3) Comparison with Convolutional Filtering: From Table I
we observe that the proposed FCCF-s outperforms convolu-
tional filtering by 0.3 dB. To demonstrate the improvement
coming from the fusion of convolutional and collaborative
filtering results, rather than the increase of convolutional
layers, we compare with convolutional filtering (CF) by setting
the number of its convolutional layers to 29, the same as that
of the proposed FCCF-s. We compare the results of CF-29 and
the proposed FCCF-s using the testing images in Group “8".
The average result of CF-29 is 41.39 dB, which is slightly
better than the original CF-17 (41.35 dB). However, it is still
worse than our result, which is 41.70 dB.

4) Ablation Experiments: To demonstrate the effective-
ness of the proposed Bayer-pattern downsampling in image
denoising, we present the denoising results by removing the
Bayer-pattern downsampling while keeping other configura-
tions constant. We use the images in Group 8 for comparison.
The detailed quantitative results are listed in the supplementary
file. The average denoising result of collaborative filtering
without Bayer prior is 40.02 dB, which is much lower than
that of collaborative filtering with Bayer-pattern downsampling
(40.82 dB). This is consistent with the following noise estima-
tion results in Table II: noise estimation results without Bayer
prior are much lower than those of the proposed Bayer prior
based estimation.

We also observe that the PSNR improvement of FCCF-s
over the version without Bayer prior is not so significant as
the collaborative filtering over its counterpart without Bayer
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Fig. 8. The intermediate results of two images captured by Nikon D800 (top) and Canon 60D (bottom) at ISO 6400. From left to right: (a) is the original noisy
image, (b), (c), (d), and (e) are the highlighted regions cropped from the noisy image, collaborative filtering, convolutional filtering, and FCCF-s denoising
results. (f) is the corresponding noise-free image.

TABLE I

COMPARISON OF INTERMEDIATE DENOISING RESULTS IN TERMS OF PSNR AND SSIM VALUES. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

prior. This attributes to the high performance of the proposed
fusion network in integrating advantages of the two stream
results. As a result, the fused results are always higher than
both results before the fusion and the merit of the Bayer prior
seems to be absorbed by the fusion module.

C. Noise Estimation Results

To verify the superiority of our noise estimation method,
we compare our noise estimation method with [1], [4], which
are the most related works to ours. We utilize mean square
error (MSE) to measure the accuracy of estimated noise
deviation maps. The distance Dc between the estimated noise
variance and the ground truth is calculated as

Dc =
‖√�c −

√
�c

gt‖2
F

K
, (8)

where �c
gt and �c are the ground truth and estimated noise

variance maps. K is the number of pixels in �c and ‖ ∗ ‖F

represents the Frobenius norm. It is hard to directly compare
with [1], [4], since their estimated noise variance is presented
in different forms. Therefore, we transform their results to
be consistent with ours for the ease of comparison. For [1],
we calculate their noise variance in YUV channels from their

estimated covariance maps in RGB channels via

σ c = √
φA + φB

φA = a2
c1σ

2
r + a2

c2σ
2
g + a2

c3σ
2
b ,

φB = 2ac1ac2σrg + 2ac1ac3σrb + 2ac2ac3σgb, (9)

where σ c represents the standard deviation in the c channel of
one pixel and aci is the transform coefficient A(c, i) defined
in Eq. (1). The estimated noise variance in [4] is presented
in NLF, which describes the mapping relationship between
intensity and noise variance. So, we map their NLF to a noise
variance map according to the denoised intensity of the Y
channel. Since the noise levels in U and V channels cannot be
represented by the estimated NLF, we only compare with [4]
for the Y channel. The results of [1], [4] are generated using
the authors’ codes.

In addition, to demonstrate the effectiveness of the proposed
Bayer prior based noise estimation method, we compare with
the noise estimation results generated by removing the Bayer
down-sampling process described in Sec. IV.

The noise estimation performance is evaluated on five dif-
ferent camera settings since the results of [1] are only available
in these camera settings. We utilize ten test images for each
camera setting. Table II presents the mean noise estimation
results for each group of images. It can be observed that the
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TABLE II

COMPARISON OF THE NOISE ESTIMATION RESULTS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Fig. 9. Comparison of denoising results for an indoor image. The noisy image is captured with the camera setting “Canon 5D Mark 3 ISO 3200”.

Fig. 10. Comparison of denoising results for an indoor image. The noisy image is captured with the camera setting “Canon 60D ISO 4000”.

proposed noise estimation method outperforms [1] and [4] for
all the three channels. In addition, our results without Bayer
prior is much worse than those with Bayer prior, which further
demonstrates the importance of Bayer downsampling in noise
estimation.

D. Image Denoising Results
We compare the proposed denoising method with five state-

of-the-art denoising methods, including original CBM3D [6],
the optimized Bayesian non-local means (OBNLM)
algorithm [41] utilized in [1] to process realistic noise,
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TABLE III

COMPARISON OF DENOISING RESULTS IN TERMS OF PSNR AND SSIM VALUES. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Fig. 11. Comparison of denoising results for an indoor image. The noisy image is captured with the camera setting “NiKon D600 ISO 3200”.

the blind denoising method noise clinic (NC) [20], the CNN
based denoising method DnCnn [16] and multi-channel
weighted nuclear norm minimization (MC-WNNM) method
for realistic noise removal [22]. We would like to compare
the denoising performance of different algorithms regardless
of the noise estimation accuracy. Therefore, for CBM3D,
which requires a single parameter for noise level, we utilize
the average of the ground truth noise variance map as
its parameter. For OBNLM, we utilize the ground truth
noise covariance maps as its input. For DnCnn, we utilize
the blind color image denoising model trained by the
authors since this model is able to process a large range
of noise levels. For MC-WNNM, we set their iteration
number to 2, which generates their best denoising results.
Except OBNLM, which is realized by ourselves, all the
other comparison results are generated by the authors’
codes.

We utilize both indoor and outdoor scenes to evaluate the
denoising performance. Since it is very difficult to capture
the outdoor scenes for hundreds of times without shifting,
we only capture the outdoor scenes for testing. Namely, there

is no ground truth images for outdoor scenes. As stated in
Sec. VI-A, we have nine groups of indoor images for testing
the denoising performance objectively. Table III presents the
denoising results for the nine groups of images in terms of
PSNR and SSIM values. The best results are highlighted
in bold. We observe that the proposed method consistently
outperforms the compared five methods for all the nine groups.
DnCnn generates the worst denoising results since its training
data is synthesized Gaussian noise. Although it can deal with
a large range of Gaussian noise, the noise statistic in high
ISO JPEG images is more complex than that of Gaussian
noise. Compared with CBM3D, our method achieves a gain
of 3.34 dB (0.038) in terms of PSNR (SSIM). This is because
that CBM3D is designed for uniform distributed Gaussian
noise, while realistic noise is out of its scope. NC, OBNLM,
and MC-WNNM are all designed for realistic noise removal.
Although we utilize the ground truth noise variance map to
calculate the patch similarity of OBNLM, it still cannot gen-
erate satisfactory results, comparable with CBM3D. Compared
with NC, our method achieves more than 2 dB gain. Compared
with the second best result, MC-WNNM, our method still
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Fig. 12. Comparison of denoising results for an indoor image. The noisy image is captured with the camera setting ”NiKon D800 ISO 6400”.

Fig. 13. Comparison of denoising results for two outdoor images. The left noisy image is captured with the camera setting “Canon 60D ISO 4000" and the
right one is “NiKon D800 ISO 1600".

achieves about 1 dB gain. The reason is that MC-WNNM
only considers the noise variance differences in different
channels, and it models the noise in each channel as white
Gaussian noise, which is not suitable for the noise in high
ISO JPEG images. Our method takes advantage of the huge

modeling capacity of deep neural network to infer the noise
in high ISO JPEG images and achieves the best denoising
results.

Fig. 9 to Fig. 12 present the visual comparison
results for four indoor images captured using different
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Fig. 14. Comparison of denoising results for two outdoor images. The left noisy image is captured with the camera setting “Canon 60D ISO 5000" and the
right one is “NiKon D800 ISO 3200".

cameras.4 To facilitate the comparison, we display zoomed
parts of the images. Please zoom in the figures for better
observation. It can be observed that the proposed method
removes the noise in flat regions well and recovers rich texture
details. As shown in Fig. 9, the results of CBM3D, NC,
and DnCnn still contain some noise. Meanwhile the results
of OBNLM and MC-WNNM is too smooth. In contrast,
our method keeps the texture details better and removes the
noise thoroughly compared with the other five methods. From
Fig. 10, the results of CBM3D, NC, and DnCnn are still very
noisy. The Chinese character in the result of OBNLM does
not look like the ground truth. The result of MC-WNNM is a
bit noisy in the flat region. Meanwhile, our method recovers a
clear Chinese character without the disturbance of noise. The
results in Fig. 12 have similar phenomena. For Fig. 11, all the
compared methods generate pseudo color while our method
recovers the most realistic details. In summary, our method
generates the best visual results compared with the competing
methods.

The indoor scenes utilized in this paper are mostly printed
photos. To verify that the good performance of the proposed
method is not because that the testing data have similar
properties with that of the training data, we further evaluate
the proposed method using outdoor scenes. Fig. 7 provides
some samples of our outdoor testing images, which include

4More visual comparison results are presented in the supplemental material.

a variety of objects with different materials, such as flowers,
cars, and buildings. Furthermore, we utilize the trained blind
model FCCF-b to process the outdoor noisy images captured
with different camera settings, as shown in Fig. 13, 14, and 15.
More comparison results are provided in the supplemental
material. Note that the OBNLM algorithm requires the covari-
ances between the R, G, and B channels as input, but the
outdoor scene has no available covariance matrixes. Therefore
we do not compare with OBNLM for outdoor images. For
CBM3D, we utilize the average of estimated noise variance
map as the noise level. We observe that our method removes
the noise in flat regions well, while the results of CBM3D
and DnCnn still contain much noise. NC cannot remove the
noise well in some cases, as the results shown in Fig. 14
and 15. The results of MC-WNNM are smooth, as shown
in Fig. 13. Meanwhile, it does not perform well in smooth
regions, as shown in Fig. 14. In summary, our method achieves
the best visual results for outdoor images.

E. Extension to Poisson-Gaussian Noise Removal

To demonstrate the effectiveness of the proposed
collaborative-convolutional filtering framework, we further
evaluate the proposed method on Poisson-Gaussian noise
removal. We follow the same way of [42] to simulate
Poisson-Gaussian noise. Specifically, the noise is added
by first scaling the input image to a peak value of 10,
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Fig. 15. Comparison of denoising results for two outdoor images. The left noisy image is captured with the camera setting “Canon 60D ISO 6400" and the
right one is “NiKon D800 ISO 6400".

instantiating Poisson random variables with the scaled values,
and then adding the Gaussian noise with stand variation of 1.
Our collaborative filtering result is obtained by first utilizing
the generalized Anscombe transformation to stabilize the
variance, the same as that of [42]. For the convolutional
filtering and deep fusion, we utilize the color version
of the BSD68 dataset [43] for testing and the remaining
432 images of the Berkeley segmentation dataset are used for
training. The training process converges in 20 epochs. The
average denoising results on BSD68 dataset for collaborative
and convolutional filtering are 25.47 dB and 26.80 dB,
respectively. Our fusion result is 27.20 dB, which is much
better than collaborative and convolutional filtering. We also
present a visual comparison result in Fig. 16. It can be
observed that there is much pseudo-color remaining in the
collaborative filtering result, meanwhile convolutional filtering
cannot recover the repeating structures well. Our fusion result
combines the strengths of the two results, achieving the best
visual quality. This experiment demonstrates the generality of
proposed method in dealing with different kinds of noise.

F. Computing Complexity

In this section, we discuss the computing complexity of
the proposed scheme. Our scheme is realized in Matlab with
MatConvnet installed. It takes about 24 hours to train one
model on our server with a 1080 Ti GPU and 32 GB RAM.

In the test stage, for one image of size 512 × 512, the noise
estimation stage (implemented in Matlab code) takes about
96 seconds and the collaborative filtering process (imple-
mented based on the code of [44]) takes about 50 seconds.
The convolutional filtering and deep fusion process takes
0.19 second since it is implemented using GPU. In total, our
method takes 146 seconds to process one image. Table III
lists the computing time for all the compared methods. The
computing time is generated using their reference codes in
our server except NC, whose computing time is generated by
their online demo code. DnCnn is the fastest code since it is
implemented using GPU. CBM3D and NC cost less running
time than OBNLM, MC-WNNM and our method, since they
are implemented in C codes, while OBNLM and MC-WNNM
are all written in Matlab codes. Our method takes less time
than the second best method MC-WNNM. Our method can
be further accelerated using GPU since the proposed noise
estimation and collaborative filtering processes are parallel-
friendly.

G. Limitations and Future Work

Since the noise in our training images are introduced by
the high ISO mode in imaging, our trained model cannot
be directly utilized to process other kinds of noise, such as
Gaussian noise, Gamma noise or scanning noise. Fortunately,
our model could be easily extended to process these kinds of
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Fig. 16. Poisson-Gaussian noise removal results. From left to right: (a) the synthetic noisy image, (b), (c), (d), and (e) are the highlighted regions cropped
from the noisy image, collaborative filtering, convolutional filtering, and fusion results. (f) is the corresponding noise-free image.

noise by enriching our training data with these kinds of noise.
In our current network, we do not take the Bayer pattern of
noise map into consideration. In the future, we would like to
modify the network according to the characteristic of noise.
For example, changing the input of the network to the Bayer-
down-sampled version of the noisy image, integrating noise
estimation and estimated noise maps into the network.

VII. CONCLUSION

In this paper, we have proposed a novel denoising scheme
by deep fusion of the strengths of collaborative and convolu-
tional filtering. For collaborative filtering, we first estimate the
noise variance according to the Bayer pattern of noise variance
maps. Then, we extend CBM3D to ACBM3D by integrating
the estimated noise variance maps and Bayer down-sampling
into the denoising process. For convolutional filtering, we uti-
lize the CNN, which includes convolution, batch normalization
and relu layers, to remove the noise. Hereafter, the two results
are fused together to generate the final denoising result via the
proposed deep CNN. Experimental results demonstrate that
our method is robust in processing both indoor and outdoor
test images, and outperforms state-of-the-art realistic noise
removal methods. In addition, we construct a large data set
with noisy and noise-free image pairs for high ISO JPEG
images, which will facilitate research on this topic.
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