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ABSTRACT In traditional physical therapy, balance evaluation is performed by the physical therapist (PT)
intermittently during clinic visits, which is subjective, inconvenient, and time-consuming. In this paper,
we use sensors and deep learning to propose an automated balance evaluation system for home and clinical
use. First, we propose a deep learning-based model to estimate the subject’s Center of Mass (CoM) position
using a depth camera, which outperforms other CoM estimation methods with high accuracy and ease of
use. Then we propose a balance evaluation system to evaluate the subject’s dynamic balance in a Gait
Initiation (GI) task. The subject’s CoM position is estimated by the proposed CoM estimation model and
the Center of Pressure (CoP) position is measured by a Wii balance board. The CoP-CoM trajectory during
the GI task is used to assess and quantify the patient’s dynamic balance control. Using data collected from
both healthy subjects and patients with Parkinson’s Disease, the proposed balance evaluation model is able
to quantify the subject’s balance level which is consistent with the human PT’s assessments in traditional
balance evaluation tests. The proposed balance evaluation system can be used as a portable and low-cost tool
for on-demand balance evaluation.

INDEX TERMS Balance evaluation, biomedical informatics, computer vision, deep learning, machine
learning, patient rehabilitation, physical therapy, gait initiation.

I. INTRODUCTION
In physical therapy, the patient’s ability to balance is an
important indicator for the physical therapist (PT) to select
the proper training programs, evaluate the progress of the
patient, predict fall risk [1], etc. Traditionally, balance eval-
uation is performed by the PT at the initial evaluation and
intermittently during clinic visits. However, the patient’s
balance may change over time and also be influenced by
medication, sleep quality, etc. Therefore, it is important to
have more frequent and preferably on-demand balance eval-
uation to monitor the patient’s condition. Moreover, tradi-
tional balance evaluation tests like the Berg Balance Scale
(BBS) [2] and the mini Balance Evaluation Systems Test
(mini-BESTest) [3] are time-consuming and require the PT’s
subjective assessments, therefore they may be limited for
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clinical use. To address the problems of traditional balance
evaluation, Mishra et al. have proposed to use a camera
system to evaluate the static balance (i.e., the ability to
stay stationary in some postures) using static body sway in
single-leg stance [4]. For dynamic balance (i.e., the ability
to maintain balance in motion or recover from imbalanced
conditions), Kennedy et al. have proposed theWeHab system
to measure the patient’s balance in dynamic tasks (e.g., sit-to-
stand andweight-shifting) but do not achieve good results [5].
In this paper, we focus on the dynamic balance evaluation for
patients with Parkinson’s disease (PD) as dynamic balance is
more important to improve agility and avoid falls.We propose
an automated balance evaluation system using multiple sen-
sors and deep learning to provide accurate, convenient, and
on-demand balance evaluation for home and clinical use.

In balance evaluation, an important indicator is the Center
of Mass (CoM) position of the human body. For the 3D
position of the human’s CoM, the horizontal CoM (i.e., the
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projection of CoM on the ground) is of greater importance
[4], [5]. Since the CoM position of the human body cannot
be directly measured, researchers have proposed to measure
the Center of Pressure (CoP) of the ground reaction force
in static/balanced postures to represent the horizontal CoM
position [10]–[12], [20]. In a static/balanced posture (e.g.,
quiet standing), the only forces acting on the human body
are the gravity (which acts on the CoM) and the ground
reaction force. According to Newton’s second law, the gravity
is equivalent to the ground reaction force in both magnitude
and position (i.e., CoP = horizontal CoM) since the acceler-
ation of the human body is zero in static/balanced postures.
The traditional way to measure the CoP position is using
the laboratory-grade force plate. However, the force plate is
primarily limited to laboratory use due to its high cost and
complicated setup procedure. TheWii Balance Board (WBB)
is a device designed by Nintendo for balance-related games
and can calculate the CoP position of the human body. The
CoP measurement error of the WBB has been proved to
be within 5 mm [6]. Because of its low cost, portability,
and high accuracy in CoP measurement, the WBB has been
increasingly used as a replacement of the force plate in many
studies [6]–[8].

However, the CoP position measured by the force plate or
the WBB is equivalent to the horizontal CoM position only
when the user is in a static/balanced posture. Moreover, the
force plate or the WBB needs to be placed on a horizon-
tal and firm plane to measure the CoP position accurately.
In balance evaluation, we often need to test the subject’s
dynamic balance or the subject’s static balance on different
surface types (e.g., the incline ramp, or the foam). To solve
this problem, researchers have proposed to use pose and
body parameters (e.g., body shape and density) to estimate
the CoM position. In previous studies, the body shape of
the subject is either modeled as geometrical segments [9],
[10] or estimated from an identification/calibration process
[11], [20]. To achieve identification-free CoM estimation,
Kaichi et al. have proposed a voxel reconstruction approach
to reconstruct the subject’s 3D body using multiple cameras
and estimate the CoM position by assigning weights to the
body parts [12]. However, they need to carefully calibrate five
cameras for the 3D body reconstruction, which makes it not
suitable for home and clinical use.

In recent years, vision-based models have been increas-
ingly used to learn and predict human-related activities, for
example, facial expression recognition [13], fall prediction
[14], etc. Inspired by these techniques, we propose to use
deep learning to learn the body parameters of the subject and
estimate the horizontal CoM position. We have selected the
depth camera instead of an RGB camera because the depth
map provides more information about the subject’s body in
the depth direction, which is essential in CoM estimation.
Besides, depth cameras work better in low light conditions
and are color and texture invariant [15]. Figure 1 shows the
proposed CoM estimation model. Motivated by the use of
Convolutional Neural Network (CNN) in pose estimation

FIGURE 1. The proposed CoM estimation model: training and application
phase.

problems [35], [36], we propose to use CNN in our CoM
estimation model as estimating the human’s CoM position
is similar to estimating the joint positions (i.e., pose estima-
tion). In the training phase, a CNN-based model is trained
using data collected from multiple subjects in various static
postures. We use a depth camera to capture the depth images
and a WBB to measure the ground-truth CoP position. In the
application phase, only the depth camera is needed to esti-
mate the subject-specific CoM position. The depth camera
is anyway necessary in most automated training systems for
its ability in skeleton tracking and motion capture [16], [17].
By using the proposed CoM estimation model, the subject’s
CoM position can also be tracked without any extra device.

Note that the CoM estimation model is trained from data
collected in static postures and it will be used for dynamic
postures in the balance evaluation system. Despite the fact
that there is no direct way to validate its accuracy on dynamic
postures (as the ground truth of CoM position cannot be
measured), we will demonstrate that the balance evaluation
model built upon the CoM estimationmodel is able to provide
accurate balance assessments that are consistent with the PT
score. Therefore, it is reasonable to conclude that the pro-
posed CoM estimation model can provide accurate CoM esti-
mation for both static and dynamic postures. By using a single
depth camera that does not need complicated setup or subject
identification, the proposed CoM estimation model can be
used as a portable and low-cost tool for subject-specific CoM
measurements.

Based on the CoM estimation model, we further propose
the balance evaluation system using multiple sensors. The
tested task is Gait Initiation (GI), which refers to the tran-
sient period between the quiet standing posture and steady
state walking. Patients with impaired balance have difficulty
in performing the correct body weight shift in GI [30].
Hass et al. have proposed that the CoP-CoM distance during
GI is an important indicator of dynamic balance control
[18]. Inspired by their research, we propose to develop an
automated balance evaluation system to provide quantitative
balance evaluation using the GI task and mimic the human
PT’s assessments during traditional balance tests. The pro-
posed system is shown in Figure 2. The depth camera and the
WBB measures the subject’s CoM and CoP positions during
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FIGURE 2. The proposed balance evaluation system.

the GI task respectively. The patient’s balance level will be
calculated based on the CoP and CoM trajectory. To the best
of our knowledge, our proposed system is the first to pro-
vide automated and quantitative evaluation on the subject’s
dynamic balance, which can mimic the human PT’s manual
assessments in the mini-BESTest. While we focus on patients
with Parkinson’s disease (PD) in this paper, the proposed
balance evaluation system can be used in the physical therapy
for any disease/condition where balance evaluation is critical
(e.g., orthopedic disease and stroke).

A preliminary version of this work has been reported in
[19], which introduced a CoM estimation model. However,
the model proposed in [19] did not show high accuracy.
In this paper, we develop an enhanced CoM estimation model
by using colored skeleton images instead of joint heatmaps
as inputs to the model, and proposing a novel coarse-to-
fine approach to improve the accuracy. The enhanced model
reduces the estimation error by about 10%, comparedwith the
preliminary model in [19]. Moreover, our preliminary work
[19] proposed only the CoM estimation model, whereas this
paper uses the enhanced CoM estimation model to propose
an automated balance evaluation system, which for the first
time enables quantitative, accurate, and on-demand dynamic
balance evaluation for home and clinical use. Compared with
traditional balance evaluation (e.g., the mini-BESTest con-
ducted by a PT, or tests using laboratory-grade devices), the
proposed balance evaluation system can be used at home or
away (e.g. at hotels while traveling), or in clinics without PTs
or high-end devices (e.g., retail-based clinics andmobile clin-
ics). The patients can use the proposed system as a portable
and low-cost tool to measure their balance on an on-demand
basis, which enables closer monitoring of their health condi-
tion and progress in physical therapy training. The proposed
balance evaluation system has the potential of significantly
reducing PT visit requirements and reducing cost for both the
patients and care providers. The main contributions of this
paper can be summarized as follows:
• We have proposed a CNN-based CoM estimation model
to estimate a subject’s CoM position from a single depth
image. Compared with other CoM estimation methods,
the proposed approach does not need any subject iden-
tification process and can estimate the subject-specific
CoM position with high accuracy, which is convenient
for home and clinical use.

• We have proposed to use the colored skeleton map
instead of the joint heatmaps (proposed in [19]) as the

input of the CNN model. The colored skeleton image
reduces the training and inference times of the CNN
model significantly by reducing the input dimension and
the number of parameters of the model.

• To solve the trade-off problem in the selection of the
discretization interval (DI) when discretizing the CoM
coordinates, we have proposed the novel coarse-to-fine
approach to improve the accuracy of the CoM estimation
model.

• We have proposed a balance evaluation system using
inexpensive and portable sensors (i.e., a depth camera
and a WBB) to measure the subject’s balance level
during a simple GI task. To the best of our knowledge,
our proposed system is the first to provide automated
and quantitative evaluation on the subject’s dynamic bal-
ance, which can mimic the human PT’s manual assess-
ments in the mini-BESTest.

The rest of the paper is organized as follows: Section II
introduces the related work on CoM estimation and balance
evaluation in more details. In Section III, we introduce the
methods used in the proposed models, including the CoM
estimation model in Section III-B and the balance evaluation
system in Section III-C. Section IV describes the experimen-
tal results. Section V concludes the paper and discusses future
work.

II. RELATED WORK
While we have briefly discussed the related work on CoM
estimation and balance evaluation in the previous section,
we next explain the most relevant techniques in more details,
pointing out their disadvantages and the need and differenti-
ation of our proposed technique.

A. RELATED WORK ON CoM ESTIMATION
1) CoM ESTIMATION USING IMU SENSORS [33], [34]
Some studies used Inertial Measurement Unit (IMU) sensors
to estimate the CoM position. Esser et al. proposed to esti-
mate the subject’s vertical CoM movements from the accel-
eration data collected by the IMU sensor by [33]. However,
the wearable IMU sensors are not convenient for patients with
impaired mobility.

2) WINTER’s METHOD
Winter proposed a kinematic method to estimate the CoM
position of the human body [9]. He modeled the human body
as 16 segments and used a motion capture system to track
the position of each segment. The CoM position of the whole
body was calculated as the weighted sum of the CoM position
of each segment. The weight of each segment was taken
from previous anthropometric studies. However, this method
cannot provide subject-specific CoM estimation as the weight
of each segment may differ in subjects of different age, sex,
and fitness level, etc.

3) THE OPTIMIZATION-BASED METHOD
Chen et al. proposed to use an optimization-based model
to estimate the body parameters of the subject [10]. They
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modeled the human body as some geometric shapes and
measured the size of each segment manually. A force plate
was used to measure the CoP position as the ground truth of
the horizontal CoM position. However, modeling the body
segments as geometrical shapes (e.g., modeling the neck as a
frustum) is not accurate and the manual measurement of the
body size is inconvenient.

4) THE STATICALLY EQUIVALENT SERIAL CHAIN (SESC)
MODEL
The SESC model translates the human’s mass distribution to
the geometry of a linked chain [11]. An identification phase
was used to obtain the subject-specific SESC parameters.
In the identification phase, each subject performed 14 static
postures. Later, Gonzalez et al. proposed that using more
postures in the identification phase and assuming the bilat-
eral symmetry of the human body can reduce the estimation
error of the SESC method [20]. They also showed that using
low-cost sensors Kinect and WBB can achieve comparable
results to those obtained using high-end equipment. However,
the subject identification phase still needs to be conducted
each time when a new subject comes or the mass distri-
bution of an existing subject has changed, which limits its
application.

5) THE VOXEL RECONSTRUCTION METHOD
Kaichi et al. proposed to reconstruct the 3D human body and
then estimate the CoM position [12]. They used five cam-
eras to capture multiple views of the human body and a 3D
reconstruction approach to reconstruct the body. The human
body was segmented into nine parts and the CoM position
of the whole body was estimated as the weighted sum of the
position of each part. The weights were taken from previous
anthropometric studies. As mentioned in Section I, the main
challenges in the subject-specific CoM estimation problem
include the difference in body size and density. By recon-
structing the 3D body, the voxel reconstruction approach
solves the problem of difference in body size but still fails
to consider the difference in body density since it uses the
density information from previous studies. Moreover, the five
cameras need to be carefully calibrated. In comparison, our
proposed model uses a single depth camera and does not need
any complicated calibration or subject identification process,
which is more convenient for home and clinical use.

B. RELATED WORK ON BALANCE EVALUATION
The balance control of the human body includes static bal-
ance and dynamic balance. Static balance refers to the ability
to stay stationary in some postures (e.g., single-leg stance),
while dynamic balance refers to the ability to maintain bal-
ance in motion or recover from imbalanced conditions. For
static balance evaluation, the body sway during single or
two-legged stance is used. The body sway is presented by
the moving range of the CoM positions, which can be mea-
sured by a force plate or a WBB (as CoP = CoM in static
conditions) [21], or estimated using the above CoM estima-
tion methods [4]. Subjects with better static balance would

FIGURE 3. Left: the original depth map captured by the depth camera of
Kinect. Right: the user depth map and the colored skeleton image overlay.

have smaller body sway. For dynamic balance, Hsu et al.
proposed to use an inertial-sensor-based wearable device
to analyze gait information and balance ability for patients
with Alzheimer’s disease [32]. However, wearable sensors
attached on the body may cause extra burden to the users,
especially for patients with impaired mobility. Therefore,
we decide to use non-wearable sensors (e.g., cameras and
balance boards) in the proposed balance evaluation system
for patients with PD. Hass et al. proposed that the CoP-CoM
distance during the GI task might represent the dynamic
balance control of patients with PD and shown that the peak
magnitude of the CoP-CoM distance was smaller in more
balance-impaired patients than in healthy subjects. However,
the CoM measurements in their work were based on the
skeleton-based approach [9] and were not accurate. More-
over, they provided only qualitative results by showing the
difference in CoP-CoM distance between patients with PD
and healthy subjects. In comparison, our proposed balance
evaluation model is able to provide quantitative balance level,
which is consistent with the human PT’s manual assessments
in standardized balance tests. The quantitative balance level
can be used to select the proper training programs, evaluate
the patient’s progress, and predict the fall risk.

III. METHODS
A. DEVICES: KINECT AND WII BALANCE BOARD
The Kinect sensor can capture the human pose using an RGB
camera and a depth camera [22]. Each pixel in the depth map
represents the distance of the pixel from the sensor. Based on
the original depth map, the user depth map (by removing the
background) and the user skeleton can be obtained [15] (see
Figure 3).

The Wii balance board (WBB) consists of four pressure
sensors located at the four corners of the board. When a user
stands on the board, the four pressure sensors measure the
vertical force and the CoP can be calculated. Compared with
our preliminary work in [19], we have extended the range
of CoP measurements by using two WBBs side by side to
enable more postures. Figure 4 shows the two WBBs and the
coordinate system. In this paper, the x- and y-axis are defined
as the length and width direction of the WBB, and the z-axis
is the upright direction. Based on torque equilibrium, the CoP
position can be calculated as

x=
L
2
×
(P12+P14+P22+P24)−(P11+P13+P21+P23)
P11+P12+P13+P14+P21+P22+P23+P24

,

(1)
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FIGURE 4. Two WBBs and the 3D coordinate system.

y=
(t+W )(P11+P12−P23−P24)+t(P13+P14−P21−P22)
P11 + P12 + P13 + P14 + P21 + P22 + P23 + P24

,

(2)

where L and W are the length and width of the board, t
is the size of the gap between the two boards, and Pij is
the force measured by the j-th pressure sensor of the i-th
board. Several studies have found that the CoP measurement
error of the WBB is smaller than 5 mm, compared with the
laboratory-grade force plate [6], [23]. Besides, the WBB is
inexpensive and portable, which makes it a good tool for
home and clinical use. Therefore, we have selected the WBB
to measure the CoP positions in this paper.

B. THE PROPOSED CoM ESTIMATION MODEL
1) INPUT AND OUTPUT OF THE MODEL
For the CoM estimation model, the input is the full depth map
and the output is the horizontal CoM position of the user.
To help the model distinguish between different body parts
(as different parts may have different densities), we have pro-
posed in our preliminary work [19] to use the joint heatmaps
to provide information about the joint positions. However, the
joint heatmaps are high-dimensional and introduce too many
parameters in the CNN model. As the heatmap of each joint
has the same size as the input depth image (512 × 424), the
heatmaps of all 25 joints have 25 channels (512× 424× 25).
To reduce the number of parameters in the CNN model,
we further propose to use the colored skeleton image instead
of the joint heatmaps to provide information about the dif-
ferent body parts of the subject. The colored skeleton image
is created by connecting the adjacent joints of the body and
using a specific color for each body segment. For example,
the right shank connecting the right knee joint and the right
ankle joint is rendered in light blue (RGB = [0, 102,
153]). Figure 3 shows an example of the colored skeleton.
The colored skeleton image also has the same size as the
depth image (512× 424) but has only 3 channels, compared
with the 25 channels of the joint heatmaps proposed in [19].
Therefore, the colored skeleton image can reduce the training
and inference times of the CNN model by reducing the input
dimension and the number of parameters of the model. Each
body segment is rendered in a different color so the network

can differentiate between different body parts. The user depth
map and the colored skeleton image are concatenated as the
input of the CNN model.

The output of the model is the horizontal CoM posi-
tion of the user. As shown in (1) and (2), the horizontal
CoM positions measured by the WBB are continuous values
(x, y), therefore the CoM estimation is a regression problem.
However, it has been proved that the direct regression of
coordinates from images is a highly non-linear problem and
learning the mapping is a challenging task [24]. To solve
this problem, we propose to discretize the continuous coor-
dinates into discrete classes. For each data sample, the CNN
model will predict the most likely discretized class kx and
ky (kx , ky = 0, 1, 2, . . .) and the continuous CoM coordinate
will be estimated as the center of the discretized class as

CoMx = (kx + 0.5)× Ix ,CoMy = (ky + 0.5)× Iy (3)

where Ix and Iy are the length of the discretization inter-
val (DI) in the x- and y- direction. More details about the
selection of DI will be discussed in Section III-B4. By dis-
cretizing the continuous CoM coordinates, we cast the highly
non-linear problem of direct CoM coordinate regression to
a more manageable form of classification in a discretized
space.

2) DATA AUGMENTATION
Data augmentation is an important step in deep learn-
ing to increase the amount and diversity of the training
data and reduce overfitting. Traditional data augmentation
approaches include rotating, flipping, translating the image,
and/or adding noise to the image. In image classification,
these operations are useful as they do not change the image
categories. However, they cannot be directly applied to our
dataset as the CoM position of the user may be different.
To solve this problem, we propose to apply different data
augmentation approaches to the x- and y-component of the
CoM position separately.

For the x-component of the CoM position, two data aug-
mentation approaches are applied to the user depth map: (1)
Adding a random depth value to the user body area, which is
identical to shifting the user body in the depth direction. (2)
Shifting the user body randomly in the z-direction. Both oper-
ations will not change the x-value of the CoM position. For
the y-component of the CoM position, two data augmentation
approaches are applied to the user depth map: (1) Shifting the
user body in the x-direction randomly. (2) Shifting the user
body in the z-direction randomly. Both operations will not
change the y-value of the CoM position. Note that the colored
skeleton images also need to be processed in the same way as
the user body (i.e., adding the same depth value and shifting
the same amount).

3) CNN-BASED NETWORK ARCHITECTURE
In computer vision problems, CNN [25] is widely used for
its advantages in feature extraction, parameter sharing, etc.
We propose a CNN-based model for the CoM estimation
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FIGURE 5. The proposed CNN model for CoM estimation.

problem (see Figure 5). In each convolutional unit, we use a
Convolutional (Conv) layer [26] to extract features from the
original image or the output of the previous layer, a Batch
Normalization (BN) layer [27] to stabilize the inputs to the
following nonlinear activation function, a Rectified Linear
Unit (ReLU) layer to add non-linear transformation, and a
max Pooling layer to reduce the size of each feature map.
We use five Conv units to extract features from the depth
images. The number of layers is selected empirically and
details about our implementation are shown in Section IV-B.
After the five Conv units, we use two Fully Connected (FC)
layers to output the probability of each discrete CoM class
from the results of previous Conv units, and an Argmax
layer to select the final output with the highest probability.
As described in Section III-B1, the continuous CoM positions
have been discretized into some classes, so the CNN model
will do a classification to decide the correct class of the CoM
coordinates. We define the loss function as the cross-entropy
between the ground-truth class of the CoM and the predicted
CoM class as follows.

Loss = −
N∑
i=1

Lilog(Si), (4)

where Li is the encoding for class i in the ground-truth CoM
and Si is the softmax output of class i in the estimated CoM.
In most image classification problems, the traditional encod-
ing method for the ground-truth label is one-hot encoding as
follows.

Li =

{
1, i = k
0, i 6= k

(5)

where k is the ground-truth class. In this way, the ground-truth
class k is encoded as 1 and all the other classes are encoded
as 0. Figure 6 shows an example. One-hot encoding is used in
image classification problems because the label for an image
is a categorical feature and all the incorrect classes (i 6= k)
should be considered equally. However, the ground-truth
class of CoM position is discretized from the continuous
value, so the incorrect classes should be penalized differently
according to their distance to the ground-truth class. Thus,
we propose to use Gaussian-distributed heatmap instead of

FIGURE 6. CoM ground-truth class encoding (k is the true class): one-hot
encoding and Gaussian-distributed heatmap.

one-hot encoding to encode the ground-truth CoM as

Li =
1

√
2πσ 2

e−
(i−k)2

2σ2 , (6)

where σ is the standard deviation of the Gaussian distribu-
tion. An example of the Gaussian heatmap is also shown
in Figure 6. The ground-truth class k has the highest prob-
ability 0.20 and the other classes are encoded according to
their distance to the ground-truth class k . The CoM heatmap
represents the confidence of each class as the ground truth.
By using the Gaussian heatmap, the CNN model can be
trained to move its output towards the ground-truth class
during the learning process.

4) A COARSE-TO-FINE APPROACH TO INCREASE THE
ACCURACY
As discussed in Section III-B1, the continuous CoM coordi-
nates are discretized into some classes in the CNN model.
However, there are some trade-offs in the selection of the
discretization interval (DI) when discretizing the CoM coor-
dinates. Smaller DI leads to larger number of discretized
classes and therefore more challenges in the classification
problem due to some outliers. Figure 7 shows an example.
The numbers in each block represent the output probability
of each class. The outlier class has a probability 0.16, which
is higher than the correct class (probability = 0.15). For
larger DI, there are smaller number of classes, which leads to
higher accuracy in the classification problem. However, the
final CoM estimation error may still be high as the true CoM
position within the class may be far from the center of the
interval that is estimated as the output CoP position.

To solve the above problems, we propose a coarse-to-fine
approach to avoid outliers and improve the accuracy in CoM
estimation. First, we train several CNNmodels with different
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FIGURE 7. Trade-off on the selection of discretization interval (DI).

FIGURE 8. An example of the proposed coarse-to-fine approach. The
green box represents the selected class in each model.

DIs in descending order (DI1 > DI2 > · · · ) and DIk should
be amultiple ofDIk−1 (i.e.,DIk = mk×DIk−1 wheremk is an
integer). As larger DI ensures higher accuracy in the classifi-
cation problem, we first use the model with the largest DI to
decide the coarse range of the CoM position. Then, instead of
directly using the center of the interval as the output, we use
the model with smaller DI to obtain finer estimation of the
CoM position. Figure 8 shows an example of three models
(DI1 = 2DI2 = 6DI3). We start with Model 1 and select the
class with the highest probability (shown in green box). Then
we use Model 2 and select between the two sub-classes that
lie in the selected range resulting from Model 1. Similarly,
we use Model 3 and select between the three sub-sub-classes
that lie in the selected range resulting from Model 2. In this
way, the outliers that may exist in the fine model (with small
DI) are excluded in the coarse model (with large DI) and
the precision of CoM estimation is improved in each step as
the DI goes smaller. For the last model (with the smallest
DI), we will output the final CoP position as the center of
the selected small interval. Although the inference time will
increase by using multiple models in the proposed coarse-to-
fine approach, the inference time of each model is negligible
(about 13 ms, see Table 2) by using the proposed colored
skeleton image (proposed in Section III-B1 and validated in
Section IV-C). Therefore, the total inference time on multiple
models is also very small (<40 ms, see Table 2) by using the
proposed coarse-to-fine approach.

C. THE PROPOSED BALANCE EVALUATION SYSTEM
Based on the CoM estimation model, we further propose
a balance evaluation system to provide quantitative balance
evaluation using the GI task. The subject’s depth images and
CoP positions are captured by the Kinect camera and the
WBB (see Section III-A). The subject’s CoM positions are
estimated from the depth images using the proposed CoM
estimation model. As GI is a dynamic posture, the subject’s
CoP position is not equivalent to the CoM position. As pro-
posed in [18], the maximum distance between the subject’s
CoP and CoM position during GI is correlated with the
subject’s dynamic balance control. Therefore, we calculate
the CoP-CoM distance during the GI task. An example of the

FIGURE 9. (a) The CoP-CoM trajectory during the GI task in three states.
S1: CoP shifts towards the stepping foot and CoM remains at the original
position; S2: CoP shifts back towards the standing limb; S3: both CoP and
CoM move forward. (b) The CoP-CoM distance vs. frame number during
the GI task.

CoP-CoM trajectory and the CoPCoM distance vs. time in
the x/y direction and the 2D distance (i.e., distance in the
xy plane) during GI is shown in Figure 9. The right foot
is the stepping foot. The subject’s motion during GI can be
divided into three states S1 ∼ S3. In S1, the CoP of the subject
shifts towards the stepping foot and the CoM remains at the
original position, therefore the CoP-CoM distance increases.
In S2, the subject’s CoP shifts back towards the standing
limb, as the stepping limb advances. During this time, the
CoP-CoM distance first decreases and then increases. In S3,
the subject’s CoP and CoM both move forward and the
CoP-CoM distance continues to increase. From Figure 9 we
can see that the maximum CoP-CoM distance occurs at the
end of S3. To build the balance evaluation model, we propose
to extract the following features from the subject’s CoP-CoM
trajectory during the GI task.
• The maximum 2D CoP-CoM distance.
• The range of motion of the subject’s CoM, in the x- and
y-direction separately.

In our data collection process, each subject was required
to perform three repetitions of GI on each leg. The motion
of each subject (including all the six repetitions) constitutes
a data sample. Therefore, there are 3 × 6 = 18 features in
the input for each sample. Similar to the CoM estimation
model, we propose a data augmentation approach for the
balance evaluation model to create more training samples
and avoid over-fitting. For the three repetitions that a subject
performs on the left leg (e.g., L1, L2, L3), the order of
the repetitions does not affect the overall performance of
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the subject and the PT’s evaluation. Therefore, the output
of this sample should remain unchanged if the order of the
three repetitions on the left leg is changed (e.g., L3, L1, L2).
Based on the above insight, we propose the following data
augmentation approach. For the three repetitions on the left
leg, there are 3! = 6 types of permutations. Similarly, there
are six types of permutations for the three repetitions on the
right leg. Therefore, we can generate 6×6 = 36 samples from
each original sample by changing the order of the repetitions.
We propose to train a Random Forest (RF) classifier [28]
to estimate a balance level from the input features. During
the data collection, the subject’s balance ability was tested
clinically by the PT with the mini-BESTest and used as the
ground truth. The mini-BESTest scores were classified into
four levels as follows.

• Level 4 (score 28): no balance problem, no fall risk
• Level 3 (score 18 ∼ 27): mild balance problems, no fall
risk.

• Level 2 (score 11 ∼ 17): medium balance problems,
medium fall risk.

• Level 1 (score 0 ∼ 10): severe balance problems, high
fall risk.

The balance level calculated from the PT score was used
as the ground truth to train the balance evaluation model. The
RF classifier takes all the 18 features as input and provides
an estimate of the balance level as the output. Based on the
study of Leddy et al. [31], patients with PD who get a score
lower than 63% of the total score (i.e., 28 × 63% = 17.6)
on the mini-BESTest have fall risk. Therefore, Level 1 and 2
in our proposed balance evaluation system indicates fall risk.
By using the proposed balance evaluation system, the patient
is able to monitor his/her balance level and fall risk using a
portable depth camera and WBB at home or any other place,
which enables on-demand balance evaluation.

IV. RESULTS
In this section, we will first present our data collection pro-
cess, then introduce the implementation details, finally eval-
uate the performance of the proposed CoM estimation and
balance evaluation system.

A. DATA COLLECTION
This study was approved by the Institutional Review Board
at University of California, San Diego (protocol #181413X).
41 subjects (age 23 ∼ 81, 26 males, 15 females) participated
in this study, including 21 healthy subjects and 20 patients
with PD. To validate that our proposed model is able to
learn the body parameters of the subject, we have recruited
subjects of different body types (height 155 ∼ 190 cm,
weight 44 ∼ 96 kg). All subjects signed the informed consent
form. There were two stages in our data collection process.
In the first stage, we collected data to train and test the
proposed CoM estimation model. Each subject stood on the
WBBs (shown in Figure 4) and performed the following static
postures on four body parts.

FIGURE 10. Examples of static postures collected in our experiments.

Trunk: keep it upright, or lean to left/right/front/back with
different angles.

Legs: squat with different angles, stand on one leg.
Arms: different positions of the left and right arm.
Feet: different positions of the left and right foot.
Figure 10 shows some examples of the postures we have

collected in our data collection.
The two WBBs recorded the CoP position, which was

equivalent to the horizontal CoM position. We also used a
Kinect sensor to capture the depth images of the subject.
The WBB and the Kinect sensor were synchronized and the
framerate was 30 frames per second. In the second stage,
we collected data during theGI task for the balance evaluation
system. Each subject stood on the WBB #1, made a step
forward on theWBB #2 according to his/her natural walking,
and steadily stepped off the board. Each subject performed
three repetitions on the left and right leg separately. The CoP
positions and depth images were also recorded by the WBB
and the Kinect camera. The subject’s dynamic balance was
tested using the mini-BESTest by the PT as the ground truth.

B. IMPLEMENTATION DETAILS
For the CoM estimation model, we used [−40, 40] (pix-
els), [−0.2, 0.2] (depth value), and [−15, 15] (pixels), for
the random shift in the x-, y- (depth), and z-direction in
the data augmentation. In the heatmap of the ground-truth
CoM, we used Gaussian distribution with standard deviation
of 3 and 2, in the x- and y-direction. There are five Conv units
in the CNN-basedmodel. In each Conv unit, 8, 16, 32, 64, 128
channels were used for the Conv layer respectively. The num-
ber of channels was selected empirically. The BNmomentum
was set to 0.9. When training the model, we used an Adam
optimizer [29] to minimize the cross-entropy loss. The batch
size was 64 and the learning rate was 5e−4. For the pro-
posed coarse-to-fine approach, we trained three models using
DI1 = 8mm, DI2 = 4mm, and DI3 = 2mm. For the balance
evaluation model, we trained a RF classifier with 300 trees
in the forest. The input of the classifier is 18-dimensional
and the output is four categories. We used Gini impu-
rity to measure the quality of a split when constructing
the trees.
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TABLE 1. CoM estimation error and requirements of each method.

C. CoM ESTIMATION RESULTS
To validate the proposed CoM estimationmodel, we calculate
the estimation error as the distance between the ground-truth
CoM position and the estimated position (i.e., the center of
the output class). Firstly we validate the performance of the
model on existing subjects. We randomly split all the samples
into three parts: a training set (including 64% of the samples),
a validation set (including 16% of the samples), and a test
set (including the rest 20% of the samples). Secondly we
validate the performance of the model on a new subject. The
samples of 40 subjects are used for training and validation and
the samples from the 41st subject are used for testing. This
process is repeated for 10 times and the average results are
presented. We compare the results of the following methods:
the CNN-basedmodel proposed in our preliminarywork [19],
the CNN + coarse-to-fine approach proposed in this paper,
and two state-of-the-art methods: the SESC method [20] and
the voxel reconstruction method [12]. Table 1 presents the
estimation error and the requirements of each method.

When testing on existing subjects, the proposed CNN-
based method (proposed in [19] and in this paper) achieves
the lowest estimation error. When testing on a new subject,
the estimation error achieved by our methods increases a
little bit, but still outperforms the SESC method in both
x- and y- directions. In additional, the identification phase
required by the SESC method is not convenient for home and
clinical use. For example, an existing subject may need to go
through the identification phase again if he/she gains or loses
weight. In comparison, the proposed CNN-based approach is
able to learn the subject’s body parameters from the depth
image without any identification process. Compared with the
voxel reconstruction method [12], our proposed approach
achieves comparable accuracy results, but requires only a
single depth camera and avoids the complicated calibration
and synchronization among multiple cameras. Therefore, it is
more convenient for home and clinical use. Comparing the
estimation error in the x- and y-direction, we can see that
the error in the y-direction (depth direction) is higher, which

TABLE 2. Comparison of the training and inference times.

is due to the fact that the back side of the body cannot be
captured by the single depth camera.

Moreover, the coarse-to-fine approach proposed in this
paper further reduces the estimation error by about 10%, com-
pared with the preliminary model in [19]. Besides, Table 2
shows the comparison of the total training time (i.e., the
total time to update the parameters in one epoch) and the
average inference time (i.e., the average time on each sample)
by using the proposed colored skeleton image (discussed in
Section III-B) and the joint heatmaps proposed in [19]. For
the colored skeleton image approach, we show the training
and inference times using single model and multiple models
in the coarse-to-fine approach. The running time is tested
on an Intel Xeon E5-1650 CPU and an NVIDIA GeForce
GTX 1080 Ti GPU.We can see that the training and inference
times of single model are significantly reduced by using
the proposed colored skeleton image in the input of the
CNN model. Although the proposed coarse-to-fine approach
increases the training and inference times by using multiple
models, it can still achieve much less training time and com-
parable inference time compared with the preliminary model
proposed in [19], while significantly reducing the estimation
error (see Table 1). Therefore, it can be concluded that the
CoM estimation model proposed in this paper improves our
preliminary model proposed in [19] by significantly reducing
the estimation error, as well as the training and inference
times.

D. BALANCE EVALUATION RESULTS
To show the performance of the proposed balance evalua-
tion system, we first provide more details on the collected
data during the GI task. Table 3 shows the average value
of each input feature (discussed in Section III-C) for each
balance level. We can see that subjects in lower balance
level (i.e., worse balance) have smaller CoP-CoM distance.
Similarly, subjects with worse balance also show smaller
range of motion in their CoM position in the y-direction (i.e.
the anterior-posterior direction), which indicates that subjects
with worse balance have smaller step length and smaller body
movement during the GI task. For the range of motion in
the x-direction (i.e., the medio-lateral direction), subjects in
level 4 (who got full score 28 in the mini-BESTest) have
higher range of motion. However, there is no significant trend
for the other three levels.

To validate the proposed RF-based balance evaluation
model, we conduct experiments using 10-fold cross valida-
tion, with 90% of the collected samples used for training and
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TABLE 3. Average feature values for each balance level.

TABLE 4. Sensitivity and specificity using the proposed balance
evaluation model.

10% for testing. The proposed data augmentation approach is
applied to the training samples. We calculate the sensitivity
(i.e., the proportion of actual positive samples that are cor-
rectly classified) and specificity (i.e., the proportion of actual
negative samples that are correctly classified) for each level
and report the results in Table 4. We also show the results on
the two categories: with fall risk (levels 1 and 2) and without
fall risk (i.e., levels 3 and 4). We can see that the proposed
RF-based model can achieve high sensitivity and specificity
for the four levels (>80%) and the two categories (>90%).
Besides, all the classification error is only one level (i.e.,
no sample is misclassified as a level higher or lower than the
ground-truth level by two levels or more). Therefore, it can
be concluded that the proposed balance evaluation system is
able to provide accurate and quantitative balance assessments
like a human PT. The high accuracy also demonstrates that the
proposed CoMestimationmodel works for dynamic postures.
By using the proposed balance evaluation system, the patient
can measure his/her balance level using a simple GI task
at home or in the clinic. The quantitative balance level can
help the patient (and his/her PT) evaluate progress in physical
therapy training, select the proper training programs, and
predict the fall risk.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a balance evaluation system using
camera and WBB sensors to enable on-demand balance eval-
uation for home and clinic-based physical therapy. To develop
this system, we first propose a CoM estimation model to
estimate the CoM position of the human body from a depth
image. Experimental results on the CoM estimation model
demonstrate its superiority over other CoM estimation tech-
niques, including high accuracy and the ease-of-use. Based on
the CoM estimation model, we further propose the balance
evaluation system to estimate a quantitative balance level
from the subject’s performance during a GI task. Experi-
mental results show that the proposed model can accurately
estimate a balance level that is consistent with the human PT’s
evaluation in traditional balance tests. By using portable and
inexpensive sensors, the proposed balance evaluation system
enables on-demand balance evaluation for home and clinical
use and has the potential of significantly reducing clinic visit
requirements and reducing cost for both the patients and care
providers.

For future work, we would like to improve the accuracy of
the proposed CoM estimation model, especially in the depth
direction. In our current experiments, the WBBs were placed
in front of the camera so only the front view was captured.
In the future, we would like to capture different views of
the user body. Moreover, we would like to test the accuracy
of the WBB by comparing it with a laboratory-grade force
plate in our data collection. We also plan to improve the
current balance evaluation system to provide more detailed
balance assessments (e.g., continuous balance scores) instead
of the four levels. Besides, the GI task discussed in this paper
may be limited for balance evaluation. We plan to explore
more training exercises in physical therapy to achieve more
comprehensive balance evaluation for patients with balance
problems.
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